Schubert polynomials and k - Schur functions ( Extended abstract )

نویسندگان

  • Carolina Benedetti
  • Nantel Bergeron
چکیده

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type A by a Schur function can be understood from the multiplication in the space of dual k-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the r-Bruhat order given by Bergeron-Sottile, along with certain operators associated to this order. On the other side, we connect this poset with a graph on dual k-Schur functions given by studying the affine grassmannian order of Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual k-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem. Résumé. Le but principal de cet article est de montrer que la multiplication d’un polynôme de Schubert de type fini A par une fonction de Schur peut être comprise à partir de la multiplication dans l’espace dual des fonctions kSchur. Les travaux antérieurs par le second auteur, nous permet de coder ces deux problèmes au moyen de fonctions quasisymétriques. Du côté Schubert vs Schur, nous étudions l’ordre partiel r-Bruhat donné par Bergeron-Sottile, ainsi que certains opérateurs associés à cet ordre. Nous donnons une relation entre l’ordre r-Bruhat et le graphe de Bruhat sur les fonctions k-Schur dualles données par l’étude de l’ordre affine grassmannienne de Lam-LapointeMorse-Shimozono. En outre, nous définissons des opérateurs associés a ce graphe qui sont analogues à ceux donnés pour le problème Schubert vs Schur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Macdonald Polynomials

s for Talks Speaker: Nick Loehr (Virginia Tech, USA) (talk describes joint work with Jim Haglund and Mark Haiman) Title: Symmetric and Non-symmetric Macdonald Polynomials Abstract: Macdonald polynomials have played a central role in symmetric function theory ever since their introduction by Ian Macdonald in 1988. The original algebraic definitions of these polynomials are very nonexplicit and d...

متن کامل

Affine Stanley Symmetric Functions

We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine analogues of Stanley symmetric functions. We establish basic properties of these functions such as their symmetry and conjecture certain positivity properties. As an application, we relate these functions to the k-Schur functions of Lapointe, Lascoux and Morse as well as the cylindric Schur functions of Postnikov. ...

متن کامل

Séminaire Lotharingien de Combinatoire, B39a(1997), 28pp. SCHUBERT FUNCTIONS AND THE NUMBER OF REDUCED WORDS OF PERMUTATIONS

It is well known that a Schur function is the ‘limit’ of a sequence of Schur polynomials in an increasing number of variables, and that Schubert polynomials generalize Schur polynomials. We show that the set of Schubert polynomials can be organized into sequences, whose ‘limits’ we call Schubert functions. A graded version of these Schubert functions can be computed effectively by the applicati...

متن کامل

Schubert Polynomials and $k$-Schur Functions

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type A by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood combinatorially from the multiplication in the space of dual k-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs...

متن کامل

Schubert Polynomials for the Affine Grassmannian

Confirming a conjecture of Mark Shimozono, we identify polynomial representatives for the Schubert classes of the affine Grassmannian as the k-Schur functions in homology and affine Schur functions in cohomology. Our results rely on Kostant and Kumar’s nilHecke ring, work of Peterson on the homology of based loops on a compact group, and earlier work of ours on non-commutative k-Schur functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013